

Reconciling Micro and Macro through Mesoscience

Raffaella Ocone Heriot-Watt University Edinburgh, UK

The 2nd Meeting of the International Panel of Mesoscience Beijing, 23-24 September 2019

My vision of "Meso": from Macro to Micro (through various levels of organisation)

... and vice versa ...

Scientists have been able to broken down, sectioned, analysed the matter; now they are challenging themselves to reassemble the various systems, to be able to explain the macro "appearance" in accordance with the micro elements

Mesoscience bridges **bottom-up** and **top-down** approaches through multi-objective optimisation under constraints

Solid, Liquid or?

"With a bucket of sand and a few careful observations, we will meet fields as diverse as **elasticity**, **plasticity**, **statistical physics**, **fluid mechanics** and **geomorphology**. Often we will face unresolved issues that are still at the frontier of our knowledge. Here certainly lies, beyond the numerous applications, the profound attraction exerted by the physics of granular media"

"Granular Media: between fluid and solid", B. Andreotti, Y. Forterre, O. Pouliquen, Cambridge University press (2013)

A New Multi-Scale Paradigm for Particulate Flows

To develop a *user-inspired* theory that help master the hydrodynamics of particulate media and improve the reliability of their industrial processing

Regime Map for Particle-Particle Interactions

Coulomb frictional law

The Classification of Flow Regimes depends on the Applications

Multi-scale Approach to Particulate Flow – A Regime Map

We need to understand the bulk properties (at the meso-scale)

Rheology of Powders

Network of Forces – the Role of Friction

How Mesoscale Influences the Macroscale

Inter-phase drag model

Wen-Yu/Ergun model:

$$\beta_{0} = \begin{cases} \beta_{\text{Wen-yu}} & \varepsilon_{p} < 0.75\varepsilon_{cp} \\ \frac{\varepsilon_{p} - 0.75\varepsilon_{cp}}{0.85\varepsilon_{cp} - 0.75\varepsilon_{cp}} \left(\beta_{\text{Ergun}} - \beta_{\text{Wen-yu}}\right) + \beta_{\text{Wen-yu}} & 0.75\varepsilon_{cp} \le \varepsilon_{p} \le 0.85\varepsilon_{cp} \\ \beta_{\text{Ergun}} & \varepsilon_{p} > 0.85\varepsilon_{cp} \end{cases}$$
$$\beta_{\text{Wen-yu}} = \frac{3}{4}Cd \frac{\varepsilon_{g}\varepsilon_{p}\rho_{g} \left| \boldsymbol{u}_{g} - \boldsymbol{u}_{p} \right|}{d_{p}} \varepsilon_{g}^{-2.65} \quad \beta_{\text{Ergun}} = \frac{180\varepsilon_{p}\boldsymbol{u}_{g}}{\left(1 - \varepsilon_{p}\right)d_{p}^{2}} + \frac{2\rho_{g} \left| \boldsymbol{u}_{g} - \boldsymbol{u}_{p} \right|}{d_{p}} \end{cases}$$

Homogeneous gas-solid flow

EMMS model:

$$\overrightarrow{X} = (\varepsilon_{sc}, \varepsilon_{sf}, U_c, U_f, U_{pc}, U_{pf}, d_{cl}, f)$$

$$N_{st} = \frac{W_{st}}{(1 - \varepsilon)\rho_p} = \min \qquad \Longrightarrow \qquad H_d = \frac{\beta_{\text{EMMS}}}{\beta_{\text{Wen-yu}}} \qquad H_d = a \operatorname{Re}_p^b$$

Heterogeneous gas-solid flow

Work supported by NSFC, CAS and Newton Fund (X Zhu, H Wang)

How Mesoscale Influences the Macroscale

Particle distribution in dense region

Work supported by NSFC, CAS and Newton Fund (X Zhu, H Wang)

What's next?

"Would you tell me please which way I ought to go from here?" "That depends a good deal on where you want to go", said the cat. Lewis Carroll

Regime Map for Particle-Particle Interactions

Mesoscience bridges bottom-up and top-down approaches through multi-objective optimisation under constraints

Thank you for your attention

Acknowledgement: financial support from the EPSRC (grant no EP/N034066/1) is kindly acknowledged